CHAPTER 4

Field—field and
photon—photon
interferometry

Optical interferometry was at the heart of the revolution which ushered
in the new era of twentieth century physics. For example, the Michelson
interferometer was used to show that there is no detectable motion
relative to the ‘ether’; a key experiment in support of special relativity.

It is a wonderful tribute to Michelson that the same interferometer
concept is central to the gravity-wave detectors which promise to
provide new insights into general relativity and astrophysics in the
twenty-first century. Similar tales can be told about the Sagnac and
Mach-Zehnder interferometers as discussed in this chapter. We further
note that the intensity correlation stellar interferometer of Hanbury-
Brown and Twiss* was a driving force in ushering in the modern era
of quantum optics.

We are thus motivated to develop the theory of field (amplitude)
and photon (intensity) correlation interferometry. In doing so we will
find that the subject provides us with an exquisite probe of the micro
and macrocosmos, i.€., quantum mechanics and general relativity.

With these thoughts in mind we here develop a framework to
study the quantum statistical correlations of light. We will motivate
the quantum correlation functions of the field operators from the
standpoint of photodetection theory. Many experimentally observed
quantities, such as photoelectron statistics and the spectral distribu-
tion of the field, can be related to the appropriate field correlation
functions. These correlation functions are essential in the description
of Young’s double-slit experiment and the notion of the power spec-
trum of light. The intensity correlation functions are usually associated
with the intensity—intensity correlation measurements as required in

* See the pioneering work of Hanbury-Brown and Twiss [1954, 1956]. Excellent pedagogical

treatments of the problem are given by Fano [1961], Glauber [1965], and Baym [1969]. For a
review of the subject see Hanbury-Brown [1974].
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the descriptions of the famous Hanbury-Brown—Twiss effect and other
two-photon interference experiments which we discuss in this chapter.

Quantum coherence theory also allows us to examine field states
which exhibit certain nonclassical features, ie., states which cannot be
described by a classical statistical theory. Such states can arise when
the quantum nature of light is explicitly exhibited. Examples are the
number and squeezed states of the radiation field.

In the next two sections we discuss the application of interferometry
to astrophysics and general relativity and then turn to a general
discussion of photon optics.

4.1 The interferometer as a cosmic probe

The foundations of physics are anchored in the bedrock of curved
spacetime. ‘Spacetime’ in the sense of Minkowski who showed us
that physical events (e.g., the emission of a photon) are best viewed
as occurring in a (flat) four-dimensional geometry having one time
and three spatial coordinates. The adjective ‘curved’ enters the picture
when gravitation is included in the problem. That is, according to
Einstein’s theory of general relativity, we view gravity as arising from
(or described by) the curvature of this four-dimensional space. This
curvature itself is produced by the presence of massive bodies in the
universe, the earth, sun, Crab Nebula, etc.

Many theorists regard the general theory of relativity to be the
most beautiful of all physical theories. However, due to the smallness
of the gravitational coupling constant,

G =667 x 1078 cm®/g §2,

experimental tests of this theory are very scarce. This fact is under-
scored by Misner, Thorne, and Wheeler, who observed that: ‘For the
first half century of its life, general relativity was a theorist’s paradise
but an experimentalist’s hell” However, thanks in large part to advances
in modern laser optics, new tests of metric gravity (general relativity)
have been, and will continue to be, carried out. The optical interfer-
ometer is the main tool in these astrophysical and general relativistic
studies.

4.1.1 Michelson interferometer and general relativity

As mentioned earlier, the Michelson interferometer was used to search
for motion through the ether and was one of the key experiments in
formulating special relativity and modern physics.
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At present a type of Michelson interferometer is being built to
detect gravity waves. As depicted in Fig. 4.1, gravitational radiation
acts so as to effectively change the path length for light in one arm of
the interferometer and thus introduces a phase shift. How this phase
shift comes about can be viewed in two different ways: (1) the gravity
wave changes the distance between the mirrors (2) the gravity wave
changes or perturbes spacetime and acts much as a dielectric. We here
take the first point of view.

In time-independent (Newtonian) gravity, the (scalar) potential @
(in free space) obeys the Laplace equation

V20 =0, (4.1.1)
whereas, in time-dependent (Einsteinian) metric gravity, the tensor
field* ®,,(r,t), where the indices p and v run from 1 to 4, obeys a
wave equation of the form

, 1
Vi- 535 ) Qwlr=0. (4.12)

Thus, the effects of gravity propagate with the speed of light ¢ from
their point of origin (binary stars, exploding galaxies, etc.) to our
laboratory on earth. This ‘gravitational wave’ causes points in the
laboratory to experience tiny amplitude-relative oscillations.

A scheme to measure the gravitational waves (g-waves) is based on
the Michelson interferometer. The effect of gravitational radiation is
to stretch or compress a rod of length L which is perpendicular to
the direction of propagation. For example, the gravitational wave of
frequency v, will cause the length L, between the mirror M; and the
beam-splitter in Fig. 4.1(a) to vary as

Ly = L[1 + hg cos(v,t)], (4.1.3)

where L is the length of the interferometer arm in the absence of a
gravitational wave and hg represents the amplitude of the gravitational
wave and is of order < 1072! for the envisioned sources.

Therefore, there will be a phase shift between the light traversing
the two arms of the interferometer of an amount

6 =k(Lx—Ly)
= kLhgy cos(v,t). (4.1.4)
Hence the intensity recorded by the detector in Fig. 4.1(a) will be

* For a discussion of general relativity directed toward the student of modern quantum optics see
Schleich and Scully [1984].
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(a) An external laser
drives a Michelson
interferometer which
is indluenced by an
incident gravity wave
denoted by h,,. (b) A
Michelson
interferometer with
cavities in both arms.
‘folds’ the light many
times, thus
lengthening the
effective optical path
lengths in each arm.
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I= %IO(I + cosd), (4.1.5)

where I, is the incident intensity.

In the actual experiments, cavities are used in the two arms of the
Michelson interferometer as in Fig. 4.1(b). Now the signal due to a
gravity wave translates into a time-dependent phase shift obtained
from Eq. (4.1.4) by replacing L, by the effective path length L, which
is essentially the number of bounces times the length of the arm L.
Therefore, for times t < v;', the g-wave-induced phase shift is given
by AP = yLhy/c, where v is the frequency of the laser light. In such
an experiment the fundamental quantum limit is given by ‘photon
shot noise’. Denoting the average number of laser photons by 7, the
power at the detector by P and assuming unit quantum efficiency for
present purposes, one has the phase uncertainty due to shot noise for
a measurement of duration ¢,

A8, ~ ﬁ% - /Fh;—. (4.1.6)

Equating A0 to Af,, we find the minimum detectable g-wave ampli-
tude for such a passive system to be

( c hv € hv
hrﬁfnﬁﬁ:w/ﬁ;;=;”p;; (4.1.7)

where we have introduced the cavity decay rate ¢ = c/L.

4.1.2 The Sagnac ring interferometer

In 1913 Sagnac considered the use of a ring resonator to search for the
‘ether drift’ relative to a rotating frame. However, as often happens,
his results turned out to be useful in ways that Sagnac himself never
dreamt of. As shown in Fig. 4.2, the real physics associated with the
Sagnac effect is simply that it takes longer for a short pulse of light to
‘get back’ to its point of origin if it goes in the direction of rotation
and it takes less time if it is moving in a counter-propagating sense.

To quantify this, consider Fig. 4.2. There we see that laser light
enters the interferometer at point 4 and is split into clockwise (CW)
and counter-clockwise (CCW) propagating beams by a beam-splitter.
If the interferometer is not rotating, the CW and CCW propagating
beams recombine at point A after a time given by

2nb
t="—
C

(4.1.8)

M
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A(r=0)

where b is the radius of the circular beam path. However, if the inter-
ferometer is rotating, with angular velocity €,, about an axis through
the center and perpendicular to the plane of the interferometer, then
the beams reencounter the beam-splitter at different times because
the CW (co-directional with €,) propagating beam must traverse a
path length of slightly more than 2zb in order to complete one round
trip, since the interferometer rotates through a small angle during the
round-trip transit time. Similarly, the CCW propagating beam tra-
verses a path length slightly less than 2zb during one round trip. If
we denote the round-trip transit time of the CW beam by t* and that
of the CCW beam by ¢, then ¢ is given by

o+ 2mbt bt
C

1
_nb (1 _ er) , (4.1.9)

(& c

where, in the first line, »Q.t* is the arc length the interferometer
rotates through before the CW beam arrives back at the beam-splitter.

Fig. 4.2
Schematics of a
Sagnac ring
interferometer.
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Similarly,
__ 2nb— bt
c
2nb bQ,\ "~
= (1 + ) . (4.1.9b)
c c
The difference between ¢ and ¢~ is given by
4nb*Q
=t ="
M=rt == T (4.1.10)
For reasonable values of b and Q,, (bQ,)* < ¢?, so that
2
Q.
At = 4“b2 , (4.1.11)
c

the round-trip optical path difference, AL, is given by

2
Q.
AL = cAt = 4’”’6 : (4.1.12)

From Eq. (4.1.12) we see the round-trip optical path difference, ac-
cording to this analysis, is directly proportional to the rotation rate
of the interferometer. A more general approach valid for an arbitrary
interferometer shape leads to the result

4Q, - 74

AL = ==, (4.1.13)

where A is the area enclosed by the light path and Z is a unit vector
normal to the surface of the interferometer.

The effectiveness of the Sagnac interferometer is limited by the fact
that the optical path difference given by Eq. (4.1.12) is much less than
a wavelength. (For instance, if » = 1 m and Q, = 10 deg/h, then
AL = 4.1 x 10712 m.) At first glance this would seem to make the
use of ring laser gyros impractical as rotation sensing devices, since
sensitivities of 10~° deg/h or less are desirable. However, there are
two different schemes used to greatly increase the sensitivity of ring
laser gyros.

The first of these is to increase the total round-trip path length of the
light by the use of a kilometer-long optical fiber as the interferometer
cavity. To see why this increases the sensitivity of the gyroscope, we
shall recast Eq. (4.1.12) into a more general form. From Eq. (4.1.12)
we see that the phase difference, A, between the counter-propagating
beams after one round trip is given by

_2nAL  87’bPQ,  4AQ,

AG —
A chA ch

(4.1.14)
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where 4 = A/2n is the reduced wavelength of the laser light and
A = nb? is the area enclosed by the light beams. Equation (4.1.14) is
valid for a one loop circular light path. If an optical fiber is used, the
light path typically consists of a fiber coil of radius b and many turns.
In particular, in such a fiber coil with N turns, Eq. (4.1.14) becomes

_ 8n2b*NQ,

A
0 cA

(4.1.15)

or, in terms of the total length, L = 2nbN, of the optical fiber,

L
Ap = 4L (4.1.16)
cA

Equation (4.1.16) represents the important result that the phase shift
induced by rotation of a Sagnac fiber ring interferometer increases
linearly with the total length of the optical fiber.

The second scheme devised to increase the signal from a ring laser
gyroscope is the introduction of an active laser medium into the ring
cavity. This arrangement is illustrated by Fig. 4.3. For convenience,
throughout the rest of this subsection, such an arrangement will be
called an active ring laser gyro. Then the CW and CCW ring laser
modes have different frequencies because of the difference in effec-
tive round-trip optical path lengths caused by the rotation of the
cavity. Thus we have only oscillations with frequencies satisfying the
resonance condition associated with L, corresponding to the effec-
tive cavity lengths seen by the CW and CCW propagating beams,
respectively, namely

where m is an integer and

L,=L (1 + b?’) . (4.1.18)

Using Eq. (4.1.17) the frequency difference between the CW and CCW
propagating beams can be approximated by

Av=v_—v, = TC - "znc ~ m”;AL = vALIi. (4.1.19)
— +

The approximation arises out of setting L, L _ = L2,
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Fig. 4.3
Schematics of an
active ring laser
gyroscope.
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Now, a couple of important points need to be made. The first
of these is that when using an active ring laser gyro it is the fre-
quency difference (not the optical path difference) between the counter-
propagating beams which is measured. This frequency difference is
generally measured by heterodyning the two output beams. Also note
that the frequency difference given by Eq. (4.1.19) is a factor of v/L
larger than the optical path length difference given by Eq. (4.1.12).
This increased scale factor together with the relative experimental
ease associated with small frequency difference measurements makes
the active ring laser gyro the most common and, currently, the most
sensitive interferometer rotation sensor.

Inserting Eq. (4.1.12) into Eq. (4.1.19) gives (for a circular ring)
_2vbQ, 200,
¢ 1
Note that Av does not depend on the total length of the cavity so an
increased scale factor is not achieved by using long fiber optic coils in
active ring laser gyros. For an arbitrary cavity geometry, Eq. (4.1.20)
becomes

Ay (4.1.20)

44Q,

pi
where A is the area enclosed by the light path and p is the perimeter
of the light path. The constant of proportionality, 44/4p, between Av

Av = (4.1.21)
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and Q, is often called the scale factor, which we will later represent
by the symbol S.

4.1.3 Proposed ring laser test of metric gravitation theories

Recent progress in research using ring laser gyroscopic devices indi-
cates that rotation rates as slow as 1071°Qg, where Qg is the earth’s
rotation rate, are potentially measurable. With this in mind, exper-
iments sensitive to Machian frame-dragging (Lense-Thirring effect),
the presence of a preferred frame in the universe (preferred frame cos-
mology), and the curvature of local spacetime can now be envisioned.

Since Einstein formulated the general theory of relativity, there
have been many other alternative theories of gravitation, e.g., due to
Brans-Dicke and Ni. These theories, which have been motivated by
different considerations, lead to different predictions for the effects
discussed above. The theoretical framework of the parametrized post-
Newtonian (PPN) formalism, which provides a means for studying
a very wide class of metric theories of gravitation in the weak-field
and slow-motion setting of the solar system, has been developed to
systematically compare the various theories with experiment.

When an ultrasensitive ring laser is placed on the rotating earth,
we expect to have several ‘effective rotations’ depending on the par-
ticular theory of metric gravity and spacetime we choose. These are
summarized in Fig. 4.4 and Table 4.1. There, we see that in addition
to the rotation of the ring at Q, and the earth’s rotation Qg, we have
three other contributions corresponding to Quach, Ccosmos, and Qcurves
respectively.

The first of these effective rotations, Qpach, is regarded as a “weak”
verification of Mach’s principle. That is, our gyro experiences an
effective rotation even if it is fixed relative to the fixed stars (i.e., if
we step off the earth so that the Q, and Qg do not directly affect
our ring laser). This effective rotation rate is due solely to the fact
that we are near another massive rotating body - the earth. Another
way to interpret this is as a kind of magnetic gravity analogous to the
magnetic moment associated with a spinning electron.

The second contribution, Qcosmos, arises from the presence of a
preferred (rest) coordinate system. This ‘preferred frame’ might be
thought to be that implied by the 3 K black-body background. Ein-
stein’s theory of general relativity involves no preferred coordinate
frame, while in the theory of Ni the universe is at rest in a preferred
frame. This effect is especially interesting since it is one of the least
well established in gravitation physics.
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Sagnac
ring laser

The final term, Qcywe, 18 due to the fact that we use a curved space
metric. Similar ‘curved space’ physics leads to the bending of starlight
and the gravitational red shift, etc.

The application of modern quantum optical tools to problems in
gravitational physics calls for heroic and imaginative experimental
effort. However, it is clear that such effort will yield rich dividends in
both fundamental and applied science.

4.1.4 The Michelson stellar interferometer

Consider the simple double (ie., double source) interference setup as
in Fig. 4.5. In Fig. 4.5(a), we see a binary star ‘sending’ light to earth
with wave vectors k and k', and we wish to measure their angular
separation, ¢.

One way to accomplish this is to collect the light by mirrors M;
and M3, as in Fig. 4.5(b), and to beat the light from two stars on the
photodetector located at the point P chosen so that the two paths

Fig. 4.4

Sagnac ring laser
interferometer used
to test metric theories
of gravity.
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Fig. 4.5

(a) A binary star
sending light to earth
with wave vectors k
and k.

(b) Schematics of a
Michelson stellar
interferometer to
measure the angular
separation of athe
binary star.

(c) Filtered light
from star S arrives at
mirrors M; and M,
with phase factors
exp(—ivt +ik ' 1y)
and

exp(—ivt + ik - rp),
respectively, while
that from star S'goes
as exp(—ivit + ik’ ' 1)
and

exp(—ivirt + ik’ - ).
(d) Ilustration that
for small angls,
(k—=Kk') (r; —xr)=
|k—Kk'|rg cos ¢ ~ ¢kry,
since |k — K'| ~ k¢
and cos¢ ~ 1.

| ¢ r

b © ()]

M, P and M,P are equal. The photocurrent is then given by

I

k(E*E)

k(| Ex(€™™ + e%™2) + Ep (e ™ 4 %12)2)

K(2(|Ex* + |Ex|?) + | Ex P [e* ™ + c.c]
+ |Ew?[e% ) 4 cc)),

(4.1.22)

where we have made the simplifying assumption that the light from
the stars has been filtered so that we may take vy = vy and therefore
the temporal factors like exp(ivkt) and exp(ivpt) cancel from Eq.
(4.1.22). Furthermore, since the radiation from a star is thermal (Ey) =
(Ex) = 0 and (EgEy) = (E;)(Ex) = 0. Finally, we note that «
is an uninteresting constant depending of the characteristics of the
photodetector and the distance to the star, etc.
If (|Ex|?) = (|Ex|*) = Iy, we have

I =2kl {2+ cos[k - (r; —rp)] + cos[k’ - (r; — r2)]}
= dxlo {1+ cos [(k+ k') - (r; —r2)/2]

x cos [(k—Kk') - (r; —12)/2] } . (4.1.23)

From Fig. 4.5(d) we see that (k — k') - (ry — rp) = @krg, so that (4.1.23)
may be written as

I = 4kl {1 + cos [(k-{—k’) - (ry —rz)/2] cos(nrzqo)}, (4.1.24)
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where we have noted |k| = |k’| = 2n/A. Thus, we see that the pho-
tocurrent will contain an interference term which is modulated as we
vary ro and would serve to determine ¢ varying ro until nroe/A = =,
etc.

This clever scheme has been applied to several nearby binaries. Un-
fortunately, atmospheric and instrumental fluctuations enter strongly
into the term cos [(k + k') - (r; —r2)/2] in Eq. (4.1.24) and limit the
utility of the approach. This is where Hanbury-Brown and Twiss make
their dramatic entrance.

4.1.5 Hanbury-Brown—Twiss interferometer

The essence of the Hanbury-Brown-Twiss (HB-T) stellar interferom-
eter is to recognize that if we consider two photodetectors at points
A1 and A, with position vectors r; and r, respectively, as in Fig. 4.6,
then we have the photocurrents

I(r,f)=x {|Ekr2 +Ef? + [EkE,;,e"("-"'“f + c.c.] } (i=1,2),
(4.1.25)

and there is phase information in the exp[i(k — k') - r;] terms.
What if we multiply the currents from two detectors (at A; and A;
in Fig. 4.6)? From Eq. (4.1.25) this will yield

(I(ry, DI (12, 1))
= 2({IBxP + Bl + [BxEie™ " 4 o] }

x{|Ex? + Bl + [EEge ™ +cc] })

= { (B +1El?)’)
+H{(E ) (B ) [EKI0) e ] } (4.1.26)

where we have used the fact that (|Ex|?E;Ey) = 0, etc. Thus we
see that the desired low frequency interference term is present; but
atmospherically sensitive terms like cos[(k+k)-(r; —r;)/2] are absent.
This is the key insight of Hanbury Brown and Twiss.

It is fair to say, however, that the Hanbury-Brown-Twiss effect
created quite a stir when it was first announced. Many questions
were voiced, e.g., how can we get phase information by beating pho-
tocurrents? Does this not somehow violate quantum mechanics? And
what about Dirac’s statement that photons only interfere with them-
selves? The confusion is resolved by considering the quantum theory
of photon detection and correlation to which we now turn.
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Fig. 4.6
Schematic diagram
of the Hanbury
Brown-Twiss stellar
intensity
interferometer. Here
P, and P, are the
photodetectors, A4,
and A, are the
mirrors, B; and B,
are the amplifiers, 7
is the delay time, C is
a multiplier, and M
is the integrator.

4.2 Photon detection and quantum coherence
functions

A more complete account of photodetection theory is given in Section
6.5. Here we present a heuristic derivation of photodetection and
correlation which is sufficient for the present purposes.

As shown in Chapter 1, the field operator E(r,t) can be separated
into the sum of its positive and negative frequency parts

E(r,t) = EP(r, 1) + ET(r, 1), (4.2.1)
where
ED (1) =) & iage kT, (4.2.2)
k
EOr) =Y adyale™ ¥, (4.2.3)

k

In the following we shall assume, for simplicity, that the field is
linearly polarized so that we deal with the scalar quantities E(Y)(r, t) =
é-EM(r,t) and EC)(r,t) = &- E)(r,1).

In the optical region, the detectors usually use the photoelectric
effect to make local field measurements. Schematically an atom is
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placed in the radiation field at position r in its ground state. The
photoelectrons produced by photoionization are then observed. In
such absorptive detectors, the measurements are destructive as the
photons responsible for producing photoelectrons disappear. In this
case, therefore, only the annihilation operator E* contributes. The
transition probability of the detector atom for absorbing a photon
from the field at position r between times ¢t and ¢ + dt is proportional
to wy(r, t)dt, with

wi(r, £) = [(fIED(r, 0)i) %, (4.2.4)

where |i) is the initial state of the field before the detection process
and [f) is the final state in which the field could be found after the
process. The final state of the field is never measured. We can therefore
sum over all the final states

wi(r,)) =Y [(FIED(r,0)li)
f

= S GIEO® 1) (FIED(, i)
f

where in the last line we use the completeness relation

SNl =1 (4.2.6)
f

The photon counting rate w; is therefore proportional to the expecta-
tion value of the positive definite Hermitian operator E)(r, {) EMH(r, 1)
taken in the initial state of the field [i). In practice, however, we almost
never know precisely the state |i). Since the precise knowledge of the
field does not usually exist, we resort to a statistical description by
averaging over all the possible realizations of the initial field

wi(r,) =Y PIEC(r, )ED(x, 1)]i). (4.2.7)

If we introduce the density operator for the field

p = _Pi)i, (42.8)

we can rewrite Eq. (4.2.7) as

wi(r, ) = Tr[pE)(r, ) EM(r, 1)]. (4.2.9)
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We define the first-order correlation function of the field

GV (ry,r25t1, 1) = Tr[pET) 1, 1) EM(x2, 12)]
= (Ery,t)EP (12, 12)). (4.2.10)
Usually we deal with statistically stationary fields in optics, i.e., the
correlation functions of the field are invariant under displacements
of the time variable. The correlation function G(ry,r2;t1,¢,) then

depends on t; and t; only through the time difference © = t, — ¢y,
1€,

GD(ry,rp;t1, 1) = GO(ry,1257). (4.2.11)
In terms of G\, the counting rate wy is given by
wi = GU(r,r;0). (4.2.12)

We now consider the joint counting rate at two photodetectors at
r; and r;. The joint probability of observing one photoionization at
point r, between t, and ¢, + dt; and another one at point r; between
t1 and t; + dt; with t; < 1, is proportional to wy(ry,t1;r2, £2)dtdt,
where

wa(ry, f1302, £2) = [(FIED(r2, 22) EP(ry, 1) 1) 2. (4.2.13)

It follows, on summing over all the final states and averaging over all
the possible realizations of the initial field as before, that

wa(ry, t1;12, 1)
= TrlpE 7 (r1, 1) ETNr2, 1) EV(r2, ) EFNry, 11)]. (42.14)
The joint probability of photodetection is thus governed by the second-
order quantum mechanical correlation function
GA(ry, 12,13, 14311, 1, 13, ta) = Tr[pETN(ry, 1) EC (12, 12)
X E(r3, 1) EF (14, 14)]
= (ED(ry, 1) ED(r2, 1)
XEMN(r3,13)EM(rs, 14)). (4.2.15)

In general, we can define the nth-order correlation function

CL00] ST S SURTONNDS SWE3 SUUNUUE Y AURTORIRE -9

= Tr[pET(ry, t1). .. EC (1t th) EP (Mt tnst) ... EF (20, t20)]

= <E(_)(r19 tl) .- .E{_)(l'n, tn)E(+)(rn+1, tn+1) s E(+)(r2n, t2n)>-
(4.2.16)

In this definition of the nth-order correlation function we have included
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equal numbers of creation and destruction operators because such
correlation functions are measured in typical multi-photon counting
experiments.

It is apparent from the above discussion that the correlation func-
tions of the field operators which are encountered in any photon
detection experiment based on the photoelectric effect are in normal
order (that is, with all the destruction operators on the right and all
the creation operators on the left). For example, the average light
intensity at point r at time ¢ is

(I(r,t)) = (ET(r, ) E(x, 1)), (4.2.17)

and the measured intensity-intensity correlation function is equal
to (EC)(r,t)E(r, ) ED(r, ) E(r, 1)), which is different from (I(r,?)
I(r,1)).

We can define the quantum mechanical first- and second-order
degrees of coherence at the position r as

g(r,7)

_ <E(_)(l', t)E(+)(l',t + T)) (4 2 18)
 VEOEOED(@OEO(,t + DED(r,t + 1))
g9 (r,7)

_ (ED@HET(nt + DEDr, ¢ + )ED(T, 1) (4.2.19)

(ECUn, HEIr, ))(ECHr, £ + )ED(r,t + 1))

where we have assumed the field to be statistically stationary. In the
definition of g@(r, 1), we have chosen not only the normal ordering
of the field operators in the numerator but a certain time ordering.
This time ordering is a consequence of the way the photoelectron rate
is calculated above (note that ¢, > t; in Eq. (4.2.14)). Considerably
simpler forms for these quantities are obtained in the special case when
the radiation field consists of only a single mode. Then most factors
cancel when the mode expansions for E*) and E) are substituted

from Egs. (4.2.2) and (4.2.3) into Eqgs. (4.2.18) and (4.2.19), leaving

1

()= (tzz,f;;L D) (4.2.20)
t t T

g2 = A0 zta Tr‘);;gwr Ja(0) (4.221)

Since only the normally ordered correlation functions are involved
in the photodetection processes, the P-representation P(a,o”) forms
a correspondence between classical and quantum coherence theory.
This happens because the quantum mechanical expectation values
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of the normally ordered functions can be calculated from the P-
representation just as we would evaluate the corresponding classical
coherence function from a classical distribution function. The P-
representation, however, does not have all the properties of a classical
distribution function. In particular, as discussed in Section 3.1, the
P-representation is not nonnegative definite. Light fields for which
the P-representation is not a well-behaved distribution will exhibit
nonclassical features of light. We will discuss some of them in Section
44.

We now derive the normalized correlation function g®(r) for ther-
mal and coherent fields within the framework of the quantum theory
of coherence. The P-representation of a single-mode thermal field is
given by a Gaussian distribution (Eq. (3.1.26)):

. 1
P(a,a”) = TI_O_I_)_ exp(—fa|2/(n>)_ (4.2.22)
We then have
o JPa)a*d?e
g(0) = [[ P (o, 0*)|oe|2d%t] 2 =2 (4.2.23)

However, for a laser operating far above threshold, the field is in a
coherent state |og), for which (see Eq. (3.1.28))

P(o,o’) = 6D (a — o). (4.2.24)
The normalized correlation then is

g?(0) = 1. (4.2.25)

4.3 First-order coherence and Young-type
double-source experiments

4.3.1 Young’s double-slit experiment

One of the classic experiments that exhibits the first-order coherence
properties of light is Young’s double-slit experiment (see Fig. 4.7). The
complex field generated by a quasimonochromatic light source is split
at the screen S; by placing an opaque screen across the beam with
pinholes at points P; and P,. The positive frequency part of the field
operator at a point P on the screen S, at time ¢ may be approximated
by a linear superposition of the field operators present at Py and P;
at earlier times:

ED(r,t) = K{EM(ry,t — ) + K2 EP(, t — 1), (4.3.1)
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where t; = s;/c (i = 1,2) 1s the time needed for the light to travel from
the pinhole P; to the point P and r; and r; are the position vectors
at the pinholes P; and P, respectively. The coefficients K; and K
depend on the size and geometry of the pinholes. From diffraction
theory it follows that K; and K, are purely imaginary numbers.

A photodetector placed at the point P measures the intensity

(I(r,t)) = Tr[pEX(r, ) EP(x, 1)]
= |[K1)PTr[pET)(r1, t — t)ED(r1,t — t1)]
HIK P TrlpE (e, ¢ — ) ED(r2,t — )]
+2Re{K ;K Tr[pE T r1, t—t)EP(ry, t—15)]}(4.3.2)
We can rewrite this equation in terms of the first-order correlation

function
G(ry,r2;t1,12) in the following way:

<I(l', t)> = |K1I2G(1)(r1,r1 E—t,t— tl)
HEK PGV (g, 125t — t2,t — 1)
+2Re[K K2 GV (ry, 15t — 11,1 — 1)) (4.3.3)

For statistically stationary fields, expression (4.3.3) for the average
intensity at the point P becomes

(I(r,t)) = |K12GD(r1,1150) + |K22 GV (12,125 0)
+2Re[K; K,GV(ry, 125 7)], (4.3.4)

Fig. 4.7

Schematic diagram
of an idealized
Young’s double-slit
experiment.
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where © = t;—t,. The average intensity (I(r, ¢)) is therefore independent
of the time ¢.

The first two terms in Eq. (4.3.4) represent the average intensities at
the point P due to the light field at the pinholes P; and P,, respectively.
The last term, however, gives a contribution due to fields at both the
pinholes and is responsible for the interference. In order to see this
clearly we set

I19r) = Ki*GV(r,r:30)  (i=1,2). (4.3.5)

We next define the normalized first-order correlation function

GV(ry,ry;7)

£ = VGO (r1,11;00GN(rz, 12;0) (430
In terms of g'!)(ry,r2;71), Eq. (4.3.4) can be rewritten as
{I(r,0)) = (IV(0) + TP (1))
2P TP M) *Re[gVir, ;0] (43.7)
Next we set
g(ry,1257) = [gW(ry, 125 7)€ rr2mIior, (4.3.8)

where a(ry,r2;7) = arg[g(ry, r2;7)] + vot and vq is the field frequency.
We then obtain

(I1(r, 1)) = (IV()) + TP (®)) + 2[T D (@) @ (0)]'7?
x |gW(ry, 125 7)] cosfory, 125 ) — vorl. (4.3.9)

For a quasimonochromatic source of light, (I)(r)), (I'®(r)),
1gD(ry,ra;57)], and a(ry,rp;7) vary slowly with respect to position on
the screen. However, the cosine term varies rapidly due to the term
voT = vo(s; — s2)/c and will lead to sinusoidal variation of intensity on
the screen.

The physical meaning of g(r;,r;;7) can be understood if we
consider the visibility of the interference fringes on the screen. The
visibility, which is a measure of the sharpness of the interference
fringes, is defined as

U= (I(r»max - (I(r))min (4310)

B (I(r»max + (I(r)>min ’
where (I(r))max and (I(r))min represent the maximum and minimum
average intensity, respectively, in the neighborhood of the point P. To
a good approximation for cos[a(r;,r>;7) — vot] they are equal to +1
and —1 in Eq. (4.3.9). We then obtain
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_ 26y m)1'2
— {ID(n) + (1)

1e., the visibility of the fringes is proportional to the magnitude of
gW(ry,ry;7), which is called the complex degree of coherence. In
particular, when the averaged intensities of the two beams are equal,
(ID(r)) = (I®(r)), the visibility U is equal to |gM(r,r2;7)]. Thus
when g(ry,r2;7) = 0, no interference fringes are formed in the region
around P and it would be implied that the two light beams reaching
the point P are mutually incoherent. A maximum visibility of the
fringes is obtained around P when |g()(r;,r3;7)| = 1 and the two light
beams reaching P are mutually completely coherent. This happens
when

1g(rs,r257)), (4.3.11)

(EC)Nr, O)ED (1, t 4+ 1)) = (11, )E(ra, t + 7). (4.3.12)

The intermediate cases 0 < |g(ry,r257)| < 1 characterize partial
coherence.

As an example, the emission from a Doppler-broadened spectral
light source, such as that from a thermal lamp, is described by

G(ry,r2;1) = &5 exp(—ivor — 12/272), (4.3.13)

where 7. is a constant. It is therefore clear that as the path difference
ct becomes much larger than ct., [gV(ry,r2;7)| = exp(—1%/212) goes
to zero and the interference fringes disappear. The constant 7., which
will be related to the light bandwidth (shown below), is thus a measure
of the coherence time of the light.

An important property of the first-order correlation function

G, r;7) = (E(,NEWD(r, + 1))

is that it forms a Fourier transform pair with the power spectrum
S(r,v) of the statistically stationary field at the position r, ie.,

0
S(r,v) = %Re/0 dtGY(r,r; 7)€" (4.3.14)

We therefore need the first-order correlation function at positive 7 to
compute the power spectrum.

We consider the example of the Doppler-broadened spectral light
source whose first-order correlation function is given by Eq. (4.3.13).
The power spectrum for the light source, as computed from Eq. (4.3.14)
is therefore equal to

ot 2.2
S(r,v) = —=exp[—(v — vo)°1:/2]. (4.3.15)
T

N
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This is a Gaussian spectrum centered around v = vy with a full-width
at half-maximum equal to 24/2In2/7.. Thus 1/7., which is the inverse
of the coherence time of the light field, is a measure of the light
bandwidth.

4.3.2 Young’s experiment with light from two atoms”

Consider the Young-type experiment shown in Fig. 4.8. There we see
two atoms at locations S and §’. At t+ = 0 both atoms are allowed to
interact with a single photon, designated by |¢), and one or other of
the atoms may be excited. In this way we prepare the state

o (la,b') + |b,d)) [0) + B1b, 1) $), (4.3.16)

where |a), |b), and |a’), |b') denote the excited and ground states of
atoms at S and S’, and o and f are the probability amplitudes for
the states associated with excited and ground state atoms, respectively.
Thus, with a probability |x|*> we have prepared the state

1
7

by single-photon absorption. Later in time, this state will decay into
the state

p(0)) = —%(la,b') +|b,d'))|0) (4.3.17)

lw(o0)) = —=I1b,6)(|y) + Iv)), (4.3.18)

2

ol -

where |y) and |y') denote the photon states associated with emission
from sites S and S’. For present purposes, it will suffice to take |y) and
|7') as plane wave states |1x) and |1y) where k/k and k'/k" are the
unit vectors from S and S’ to the detectors at r, see Fig. 4.8. However,
the question of how to most simply choose the states |y) and |y’) while
still being faithful to the physics is an important and subtle one, and
is treated in Appendix 4.A.”
The correlation function GU(r,r;t,t) now takes the form

G(r,r;1,1) = (p(o0) EDNED(1)lp(e0)) = GV(x,r;0),
(4.3.19)

where we have noted that the time-dependent factors cancel because
Vi = vp. By completeness as in Eq. (1.5.16), this may be written as

GI(r,r;0) = ¥i(r)¥4(r), (4.3.20)

* See Scully and Driihl, Phys. Rev. A 25, 2208 (1982).
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Fig. 4.8

Schematic diagram
of an Young-type
experiment via light
from two atoms.

where

Ws(r) = (OIED(r)ly(c0))
_ Sk ikr ik'r
-5 (e te ) . (4.3.21)
Thus we see that an interference pattern is obtained which is gov-
erned by

G(r,r;0) = {1 + cos[(k — k') - 1]}, (4.3.22)
and as is discussed in Appendix 4.A, this can be written as
2k
(M ) = £2 Zd-
G (r,r;0)= cfk[l + cos ( » d r)]
= &% [1 + cos(2kxd/ D)], (4.3.23)

which is the usual result.

4.4 Second-order coherence

In the previous section we considered the first-order correlation func-
tions and their properties. For fields with identical spectral properties,
it is not possible to distinguish the nature of the light source from
only the first-order correlation function. For example, a laser beam
and the light generated by a conventional thermal source can both
have the same first-order coherence properties. The same, however, is
not true when we consider the second- and higher-order coherence
properties of the light sources. We therefore turn to the applications
of the second-order correlation functions of the field.
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4.4.1 The physics behind the Hanbury-Brown—Twiss effect

Armed with a theory of photoelectron correlations, we now return to
the Hanbury-Brown-Twiss effect. Let us begin by considering the state
ly) = |1k, 1), ie., the case of two independent photons one having
momentum k and one having momentum k’. Now it is clear that the
second-order correlation function may be written as

G¥(ry,ry;t,1)
= (1, e |[ET) (01, ) EC) (02, ) ED (12, ) E)(x, £)| 1y, L), (4.4.1)

and using >, [{n}){{n}| =1 this becomes

GA(r,r2;t,0) = > (I, e[ (1, ) ED (x2,1)[{n})
n}
x ({n}| EF (12, ) EP(r1,1)| 1, 1) (4.4.2)

As |1, 1) is a two-photon state which is annihilated by E™)(ry, 1)
E™)(ry,1), only the [0)(0] term survives.

In view of the above, we see that for the case of two single photons
we may write

GA(ry,r2:8,1) = YO (01, 1231, )P D1y, 1512, 1), (4.4.3)
where

W(ry,1512,8) = (O|E (r2, ) E (11, )| 1, 1) (4.4.4)
From

EM(r, 1) = & (ake_m""ik"' +ak,e-""+"k"ff) (i=1,2), (44.5)
these become

‘I’(z)(rl, t;r,t) = é"%e‘zi”(OIakeik"‘akfeik"'z 1k, 1g/)
+g§e—2ivt<0|akleik"l'1 akeik-rz | lk’ 1k’>

— g2 ( itk | ok 'l’1+k'rz)’ (4.4.6)
and

GOy, 103t,0) = 2(51{1 + cosf(k — k') - (r; — 1’2)]}. (4.4.7)
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S S Fig. 49
— 1 1 Pictorial
YO(r,rtt = + >< representation of
(r), 1y 1, 1) g ,__/2 g ) terms in Eq. (4.4.6).

PHOTON-CORRELATION INTERFEROMETRY FROM TWO ATOMS

Consider next the case of two atoms at § and S’ as in Fig. 4.9 in which
both atoms are initially excited, that is,

[p(0)) = la,d’)|0). (4.4.8)
Then after many decay times this goes into
lp(c0)) = 1b,6")|7,7"), (4.4.9)

where, as in the previous section, we may take [y) = [1x), |y) = [1k).
The two-photon correlation function is then identical with that given
by Eqs. (4.4.1) and (4.4.7).

Next we turn to incoherent atom excitation in order to display
the real power of the HB-T effect. Specifically, suppose we excite the
atoms at § and S’ by electron impact. Then at some instant, call it
t = 0, we will have a state of the form

W) = [Inle”|a,a) + 1] (¢”lab)) + ¢ |b,a))
+ Iy11b,5)| ® [0), (44.10)

which, see Appendix 4.A for a discussion of the spherical-versus plane-
wave description of interference physics, evolves into

() = [[odel1ks L) + 181 (€”114) + € [1i) ) +17110)]
®|b,b"), (4.4.11)

where ¢, 0, and ¢’ are random phases due, for example, to random
excitation times of the atoms.

In such a case, the interference terms in the first-order correlation
function will be multiplied by a random phase factor, which we must
average over, that is

[GV(x,r;1)]

interference cross terms

— (700 eI (4.4.12)



4.4 Second-order coherence 123

This vanishes due to the random nature of # and 6’. Thus one might
conclude that atoms described by Eq. (4.4.11) would never yield spatial
interference. This is not the case. If we use Eq. (4.4.11) to calculate
GA(r1,r2;t,t), we find

G(z)(rlarZ;t, t)
= [o)*( 1k, I |EC (1)) EFN 1) EF) (1) D (1) | L, 1)
= 2)a)2 {1 + cos[(k — k) - (r; — )]} (4.4.13)

Here we see again that the random phases which destroy first-order
coherence do not affect second-order HB-T type coherences.

THE HANBURY-BROWN—TWISS EFFECT FOR THERMAL AND
LASER LIGHT

We now turn to the case of many-photon states associated with
thermal and laser light and calculate the HB-T correlations for two
such sources at S and S’

As before, we look for the rate of coincidences in the photocount
rates of detectors at r; and r governed by the second-order correlation
function

GP(ry,ry;t,t) = <E(_)(r1, HET (r2, ) EP(r2, ) ED(ry, t)),
(4.4.14)

and consider the case in which the essential terms in the electric field
operators E(r;, t) (i = 1,2) are given by

EM(r;,t) = & (ake_i“t+ik"‘ + ak,e-fvr“k"'f) , (4.4.15)

where k and k’ are the wave vectors of light from the two sources S and
S’. Furthermore, as before, we are considering only equal frequency
intervals such that v = c[k| = c|k’|. Noting that only ‘pairwise’ operator
orderings remain for thermal light, phase-diffused laser light, and light
from two atoms (see Appendix 4.B), we have

G(r1,1;t,1)

= cg”ﬁ<(a;f‘e_ik'” + ai,e""‘"") (a;ie_""'r2 + alt,e_"""'z)
x (axe™™ + ak/ei""'z) (ake""‘rl + ak:eik"")>

= cg’ﬁ <a;£a;£akak + a;r‘,alt, ay ay
a1+

—!—alt,a;iak/ak [1 + e"(k_k')'("_”)} > (4.4.16)
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If we assume (ng) = (ny) = (n) and likewise (n}) = (nl,) = (n?), we
may write Eq. (44.16) as

GA(ry,1y;1,t)
= 26% (<n2> —(n) + (n)2{1+cos [(k—K) - (r;—1y)] }) (4.4.17)

Next we calculate (n?) for the two different cases in question: stars
and phase-diffused laser light.

(a) Stars: the light from stars is thermal, therefore
(n) =2(m)> +(n),  (m) = [exp(hv/kaT) —1]7,
and Eq. (4.4.17) yields

GA(ry, 12,1
—268% (2<n>2 + <n>2{1 +cos [(k — k) (1] — )] })
(4.4.18)

The last term in Eq. (4.4.18) is the Hanbury-Brown—Twiss
term which allows us to measure the angle between k and k'
as in the discussion following Eq. (4.1.24).

(b) Lasers: far above threshold, the photon statistics for the lasers
are Poissonian, therefore, (n?) = (n)2 + (n), and we have

G(Z)(rl: I, ta t)
=264 (* + ({1 +cos [(k—K) - (r1 — )] }).
(44.19)

So, in both cases, we can measure the angular separation without
the troublesome cos [(k + k') - (r; — r2)/2]-type terms which plague the
Michelson stellar interferometer.

THE HANBURY-BROWN—TWISS SPATIAL INTERFERENCE
EFFECT FOR NEUTRONS

By now, it is clear (contrary to what one frequently hears and reads)
that the HB-T interference pattern, i.e., the interference cross terms in
G?(ry,17), has nothing to do with the boson nature of the photons.
That is, the HB-T interference cross terms are present for radiation
emitted by two independent atoms or lasers as shown in the previous
two sections. In both of these cases, ‘boson clumping’ is absent.

Furthermore, it is clear from Eq. (4.4.4) and Fig. 4.9 that the effect
carries over for neutrons as well. In such a case, the photon annihilation
operators such as that given by Eq. (4.4.5) are replaced by a fermion
operator of the form
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P(ri, 1) = cke ™ KT 4 oo K, (4.4.20)

where the relevant fermion annihilation operators ¢k and ¢y now obey
the anticommutation relations

Ckcz, + c;f(,ck = 5k,k'a (4.4.21)
cpel, + chef =0, (4.4.22)
ckey + cpekg = 0. (4.4.23)

Now Eq. (4.44) is replaced by the two-fermion wave function

PA(ry, 512, 1) = (O (r2, )P, 1))
— e—2ivt <O|ckeik-rzck/eik"n | lka 1k’>
+e 2 0] ey e® ege® T |1y, 1), (4.4.24)

and because

(Olexewe| 1k, 1) = (Olexcwchel, 10)
= —(0Olckc}[0) (Olci ey [0)
— 1, (4.4.25)

while an equivalent operator algebra for the second term in (4.4.24)
yields +1, the fermion—-fermion correlation function takes the form

GO(ry,rp:t,t) = 2{1 —cos[(k — K) - (r; — 12)] } (4.4.26)

Thus we see that the Hanbury-Brown-Twiss effect works as well
for two radiative point sources, S and S’ of Fig. 4.9, emitting neutrons
or 8 particles, as it does for y rays or a particles. The only difference
is the sign of the interference term.

4.4.2 Detection and measurement of squeezed states via
homodyne detection

As seen earlier, direct photon count experiments, in which light of
photon number distribution p(n) falls directly on a photodetector,
provide information about the mean photon number and higher-order
moments only. Such intensity measurements, therefore, are not partic-
ularly sensitive to squeezing but to antibunching and sub- or super-
Poissonian statistics, which can also occur for nonsqueezed fields.
Detection of squeezed states, on the other hand, requires a phase-
sensitive scheme that measures the variance of a quadrature of the
field. In this section, we consider the problem of detection of squeezed
states of radiation via homodyne detection.

The schematic arrangement for homodyne detection is shown in
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Fig. 4.10. The input field is superimposed on the field from a local
oscillator (LO) at a lossless beam-splitter of transmissivity 7 and
reflectivity R such that R+ T = 1. The input and the oscillator modes
are described by the annihilation operators a and b, respectively. Then
denoting the two out-modes reaching photodetectors 1 and 2 by ¢ and
d, respectively, we have

c=+Ta+iy1 =T b, (4.4.27)
d=iJ1—T a+ /T b. (4.4.28)

There is a 7/2 phase shift between the reflected and the transmitted
waves for a symmetric beam-splitter which we have included by the
factor i in Eqgs. (4.4.27) and (4.4.28). The signals measured by the two
detectors are determined by the operators

cfe=Tata+ (1 =T)'b+i/T(1 — T)a'b—bTa), (4.4.29)

dld=(1—T)ata+ Tb'b —i/T(1 — T)a'b—bta). (4.4.30)
The frequency of the LO is equal to the input frequency so that the
above operators do not have any time dependence. In the following
we discuss the ordinary and balanced homodyne detectors.
ORDINARY HOMODYNE DETECTION

In ordinary homodyne detection, the transmissivity of the beam-
splitter is close to unity, ie.,

T > R, (4.4.31)

Fig. 4.10
Schematic diagram
for homodyne
detection.
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and only the photocurrent from detector 1 is measured. The LO mode
is excited into a large amplitude coherent state |f;) with phase ¢.
From Eq. (4.4.29) the signal reaching detector 1 is obtained as

(ey=Tla'a) + A=T)IB1*=2\/TA=T)IBi1{X(¢1 + 7/2)),
(4.4.32)

where
X(p) =Xy = %(ae“i"’ + a'e’?). (4.4.33)

We see that the signal contains the transmitted part of the input
photons, reflected LO field, and most importantly, an interference term
between the input field and the LO field. It is precisely this interference
term that contains a quadrature of the input field depending upon the
phase of the LO. In this detection scheme, a strong LO is used so that

(1—=T)B> > T{d' a). (4.4.34)

The inequalities (4.4.31) and (4.4.34) together imply that almost all the
input field reaches the photodetector but the fraction of the LO field
reaching the detector is still dominant. We can, therefore, neglect the
first term in Eq. (4.4.32) and the mean number of photons in mode ¢
is

(ne) = (1= TIFI> =2/ T = TAI(X (¢ +7/2)). (44.35)

The first term constitutes a known constant value which can be
subtracted from the signal and the remaining signal contains the
quadrature of the input only.

The input and the LO modes are independent, ie., (ab) = (a)(b).
The photon number fluctuations can then be calculated in a straight-
forward manner using Eqs. (4.4.29) and (4.4.30)

(Ane)? = (1 — T)IBi1{(1 — T) + 4T[AX(¢1 + 1/2)]*}. (4.4.36)

In obtaining Eq. (4.4.36), we have used the inequality (4.4.34) and
retained terms of second order in |§;|. The signal noise is now seen
to contain reflected LO noise (first term) and the transmitted input
quadrature noise (second term). When the input is incoherent (or
vacuum), [AX(¢; + n/2)]> = 1/4, and the remaining term represents
the LO shot noise. The squeezing condition for the input is

[AX(¢; +n/2)]* < 1/4 (4.4.37)
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for certain values of the LO phase ¢; for which either quadrature X,
or X, is squeezed.

In practice, the input is first blocked to determine the shot-noise
level. The input is then allowed to reach the beam-splitter and the
variance is determined with reference to the shot-noise level. Squeezing
therefore manifests itself in sub-Poissonian statistics in homodyne
detection.

Note, however, that intensity measurements in homodyne detection
are quite different from those in direct detection, i.e., (a) intensity fluc-
tuations in this case directly measure the fluctuations in a quadrature
of the input, and (b) the signal and its variance depend upon the local
oscillator phase angle, which is an external parameter.

BALANCED HOMODYNE DETECTION

In the discussion following Eq. (4.4.35), we assumed a perfectly coher-
ent LO field and the oscillator excess noise has been neglected. The LO
shot noise and the excess noise that enter through the reflectivity of the
beam-splitter cannot be suppressed in ordinary homodyne detection
because T, in principle, can never be 1. The LO noise can therefore
limit ordinary homodyne detection. In particular, the detection is not
quantum limited if the transmitted input noise is smaller than the
reflected oscillator noise, as may be the case when the input noise is
too small.

An alternative scheme is based on two-port homodyne detection
which balances the output from the two ports of the beam-splitter.
The fact that the noninterference terms at the two ports have the
same sign and the interference terms appear with opposite signs (see
Eqs. (4.4.29) and (4.4.30)) can be exploited to completely eliminate the
noninterference terms. In this scheme, a 50/50 beam-splitter is used
and the difference of two photodetector measurements is obtained.
The output signal is determined by the operator

na =cte—d'd = —i(a'b — bla). (4.4.38)
The measured signal then is

(nea) = =2|Bil{X (1 + 1/2)). (4.4.39)

We see that the LO contribution to the signal has been eliminated
and only the interference between the LO mean field and the input
quadrature survives. The variance of the output signal can be found
to be

(Ana)* = 418112 [AX (¢ + 7 /2)]% (4.4.40)
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Fig. 4.11

A Mach-Zehnder
interferometer with a
phase sensitive
element in the upper
arm operating in the
balanced mode. The
operators a and b are
the annihilation
operators for the
signal and local
oscillator modes.

} Kerr medium

A 4

Here once again we assume a strong LO. The dominant term now is
only due to the interference between the input signal noise and the
LO power, and the LO noise is eliminated completely. This makes the
strong LO condition less stringent in this case.

MEASUREMENT OF PHASE UNCERTAINTY"

The use of balanced homodyne detection in precision interferometry
yields several interesting results. Here we discuss the application of
balanced homodyne detection in the measurement of phase uncertainty
of optical signals.

The system is depicted in Fig. 4.11, where we see a Mach—Zehnder
interferometer with a phase sensitive element in the upper arm oper-
ating in the balanced mode. The phase sensitive element introduces
a phase shift ¢,, e.g., by a Kerr effect medium discussed in Section
19.2.

We assume M; and M; in Fig. 411 to be 50/50 beam-splitters

* This section follows, in part, the unpublished lecture notes of B. Yurke, to whom the authors
are indebted.
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and assume the two path lengths between them to be equal. The
annihilation operators of the various modes in Fig. 4.11 are related to
each other via

1
= ——(a +ib), (4.4.41)
V2
;1
b= 7§(ta+b), (4.4.42)
and
c= % (d +ibe ’4’1')
_1! 1—e%)a+i(l+e%)b], (4.4.43)
: ) )
1 1 ,i®p
d= ﬁ (la + be )
=i +e*)a— (1-e%)]. (4.4.44)

Here, as before, we assume a n/2 phase shift for the reflected field.
The output signal in the balanced homodyne detector is given by
the operator

Ned = cfe—dd
= (b'b — a'a)cos ¢, — (a'b + b'a)sin ¢, (4.4.45)

If the local oscillator mode is in a large amplitude coherent state |f;)
and the signal mode is in a vacuum state |0), the signal is

(nca) = ny cos ¢y, (4.4.46)

where n; = |2
It is interesting to note that, for ¢, = /2,

ng = —(a'b+ bla), (4.4.47)

i.e., neg does not depend on the photon number operators and the
system in Fig. 4.11 is essentially equivalent to a balanced homodyne
detector of Fig. 4.10.

Now, for the signal mode in a vacuum state, the difference operator
(4.4.47) has a variance

(Angg)® = 1B = m. (4.4.48)

This can be related to the phase error by noting that, from Eq. (4.4.46),
we have
Oy

= —n; sin @y, (4.4.49)
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and, since on balance (¢, = n/2),
a(ncd)
= ny. (4.4.50)
¢,
Hence the phase error is given by

T 10(na) /0y

1 (4.4.51)

N
If we now take the signal to be a squeezed vacuum state, |0, £) with
¢ = rexp(if),

(nea) = (m + sinh? r) cos ¢,
> p; cos d)p, (4.4.52)

On balance, ¢, = /2, [0(ncs)/0¢,| = n;, and
(Angg)* = ni[cosh 2r — cos(f — 2¢;) sinh 2r] + sinh?r, (4.4.53)

where we have used Eqgs. (2.7.11)—(2.7.13). If we take 6 = 2¢;, Eq.
(4.4.53) becomes

(Anca)?* = me™¥ + sinh?r, (4.4.54)

and, for n; > 1, we may neglect the sinh’r term in Eq. (4.4.54) to
yield the reduced phase noise

Ancd

|a<ncd>/a¢p|

~ £ (4.4.55)

NG

Ap =

4.4.3 Interference of two photons

We now describe an experiment in which the joint probability for the
detection of two photons at two points is measured as a function
of the separation between the points. This two-photon interference
experiment is an example of the intensity correlation experiment where
the predictions of the quantum theoretical analysis are quite different
from the corresponding predictions of the classical coherence theory.
The experimental results agree with the predictions of the quantum
coherence theory for the choice of parameters where the classical and
quantum theories yield different results. The existence of nonclassical
effects in two-photon interference is just one example of a large number
of related phenomena where the quantum nature of light is exhibited
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Beam-
splitter

explicitly. Some of these phenomena will be discussed later in this
book, particularly in Chapter 21.

In the two-photon interferometer, two randomly phased light waves
of narrow bandwidth impinge simultaneously on the surface of a
beam-splitter. The reflected and transmitted waves are brought to-
gether on the detectors D, and D, located at r, and r;, respectively,
as shown in Fig. 4.12. The outputs, after amplification, are sent to a
correlator. The measured coincidence rate provides a measure of the
joint detection probability P(x,, xp)0x,0x, of detection at x, and x;
within dx, and dx;, respectively. Here x, and x;, are the projections
of r, and r, onto the vectors k, —k; and k, —kq, respectively (see Fig.
4.12), where kq, k, are the wave vectors corresponding to ki, k, after
reflection at the beam-splitter.

As discussed in Section 4.2, the joint detection probability is gov-
erned by w,. We thus have

P (x4, Xp) = Kakip (ET (%) ET(x)EP(xp)EF(x,)),  (4.4.56)

where k, and x; are factors which depend on the characteristics of
the detectors. We now calculate the joint detection probability for
incident correlated photons within the framework of both quantum
and classical coherence theories.

Fig. 4.12

Schematic diagram
for the two-photon
interference
experiment. (From Z.
Y. Ou and L.
Mandel, Phys. Rev.
Lett. 62, 2941 (1989).)
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If we treat O (see Fig. 4.12) as the origin, we can express the positive
frequency part of the fields E™)(x,) and E™)(x;) in the form

EP(x))=¢& (i\/ﬁaleiﬁl"" +JT azeﬂ‘z"“) , (4.4.57)
E(+)(xb) =& (\/Taleik"”’ + i\/ﬁazeﬂ.‘z'”’) ’ (4.4.58)

where R and T are the reflectivity and the transmittivity of the beam-
splitter, a; and a, are the destruction operators for the input fields at
the beam-splitter, and & = (hv/2eo V)2, If the beam-splitter is 50/50,
then R = T = 1/2. Equations (4.4.57) and (4.4.58) then simplify and
are given in the form

£
V2
&
NG

The initial state of the field for single photons is the two-photon
Fock state |11,15). Such a state can be prepared in the process of
degenerate parametric amplification in a nonlinear medium (Chapter

16). The joint detection probability density, Eq. (4.4.56), is therefore
given by

EM(xg) = —(iare™ ™ + aye2™e), (4.4.59)

EP(xp) = 2 (a1e™™ £+ igyelkem), (4.4.60)

P(xg, X3) = Kakp {11, 12| ET(x0) ET) (x5) ET () E P (x,)[11, 12)
1

{1 ~cos[(ky — ki) 1, — (ks — k1) 1]} (4.4.61)

where we have substituted for E(*)(x,) and E*)(x;) and their Hermi-
tian conjugates from Egs. (4.4.59) and (4.4.60). If the angles 6 between
k; and k, and between k, and k; are very small, then the associated
interference pattern has a fringe spacing given by

2n 2n 2n

L~ — = N —, (4.4.62)
ki —ka| ko —ky| KO
where k = |kq| = |k,|, and we obtain
P(xz,xp) = %Kakbé""‘{l — cos[2n(x, — xp)/L1}. (4.4.63)

Thus the joint detection probability exhibits a cosine modulation in
Xq — Xp with visibility

Ponax = Pin _ 4 (4.4.64)

U= —m—m—4—4— 8 =
Pmax"‘Pmin
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Therefore, there is an interference between two two-photon amplitudes
associated with both photons being reflected and both photons being
transmitted.

A unity visibility implies that if a photon is detected at the position
X, then there are certain positions x, where the other photon cannot
be found, and vice versa. This situation is in contrast to classical optics
(as seen below) which predicts a nonvanishing optical field at both
positions x, and xp.

Next we calculate the visibility by treating the incident fields clas-
sically. We can replace the operators a; and a; in Egs. (4.4.59) and
(4.4.60) by the classical c-number amplitudes o; and a,, respectively.
We also assume that the fields have random phases. This is a rea-
sonable assumption because the single-photon states have arbitrary
phase. The classical ensemble averages of phase-dependent quantities,
such as a; and |o|>a,, therefore vanish.

The joint detection probability P(x,, x;) is now given by Eq. (4.4.56)
where E™) and EC) are classical c-number fields and the angle brackets
indicate the classical ensemble average. It is readily seen that

P 8) = graks{{(Ts + 1) — 2(12) cosl2n(xa — x0)/21},
(4.4.65)

where I = &2|aq|> and I, = &?|ay)% The visibility U of the interference
is given by
2(IW13)

- : 4.4,
v (I3 + (I3) + 2(I117) (4.4.66)

As (I?) + (I3) = 2(I1 1), it follows that

U< % (4.4.67)

which gives a classical limit. This shows that the visibility cannot
exceed 50 percent in contradiction to the prediction of the quantum
mechanical result.

An observation of a larger than 50 percent visibility therefore
corresponds to nonclassical behavior. A visibility of over 75 percent
has been observed in the two-photon interference experiments.

4.4.4 Photon antibunching, Poissonian, and sub-Poissonian
light

In Section 4.2 we showed that a correspondence between the quantum
and classical coherence theories can be established via P-representation.
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However, as we discussed, the P-representation does not have all the
properties of a classical distribution function. Thus it is possible that
certain inequalities for the correlation functions which implicitly as-
sume a well-defined probability distribution may not be satisfied. A
violation of these inequalities for certain radiation fields would there-
fore provide explicit evidence for the quantum nature of light. In this
section we consider some examples of such fields.

In the classical coherence theory, the field operators are replaced by
c-number fields. For such classical fields, it follows from the Schwarz
inequality, |(a*b)|?> < (|la|*){|b|*) (with a = I(r,t) and b = I(r,t + 7)),
that

I(r, I (r,t + 7)) > < (T, ) I (r, t + 1)), (4.4.68)

The corresponding inequality in the quantum coherence theory is ob-
tained by replacing the product of intensities within the angle brackets
by the corresponding normally ordered operators, i.e.,

1T DIt 4+ 1) ) < (I t) HCTHrt+1) ),  (4.4.69)

where : : represents normal ordering, i.e., the creation operators to
the left and the annihilation operators to the right. This inequality is
satisfied for fields with a well-defined P-representation. It follows from
the definition of g?(t) (Eq. (4.2.21)), that, for statistically stationary
fields, this inequality can be recast in the following simple form

g¥(1) < g2(0). (4.4.70)

This inequality was seen to be satisfied by thermal and coherent light.
We recall from the definition of g(®(r) that it is a measure of the
photon correlations between some time ¢ and a later time ¢t + 7. When
the field satisfies the inequality g'?(r) < g®(0) for t < 7., the photons
exhibit excess correlations for times less than the correlation time
7.. This is called photon bunching as the photons tend to distribute
themselves preferentially in bunches rather than at random. When
such a light beam falls on a photodetector, more photon pairs are
detected close together than further apart (Fig. 4.13(a)). The thermal
field is an example of photon bunching,

In certain quantum optical systems, the inequality (4.4.70) may be
violated with the result

g¥(1) > g@(0). (4.4.71)

This would correspond to the phenomenon of photon antibunching.
This is the opposite effect, in which fewer photon pairs are detected
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(a)

(b)

(¢c)

close together than further apart (Fig. 4.13(c)). Photon antibunching
will be discussed in the process of resonance fluorescence from an
atom in Section 10.6.

Another nonclassical inequality is given by

g?(0) < 1. (4.4.72)

This nonclassical inequality is satisfied by fields whose P-representation
is not nonnegative definite. To see this explicitly, we first rewrite this
inequality, after some rearrangement, in the form (see Eq. (4.2.21))

({a'd'aa) — (aTa)?) < 0, (4.4.73)
or, in terms of the P-representation,

/ P(a, o )(|o)* — (ata))*d*a < 0. (4.4.74)

Since (|x|?> — (ata))? is positive definite for all values of a, the only
way this inequality may be satisfied is if P(«, ") is negative for at

Fig. 4.13

Photon counts as
functions of time for
light beams which
are (a) bunched, (b)
random, and (c)
antibunched.
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least some values of a. Thus P(x, ™) does not satisfy the properties of
a classical distribution function. The inequality (4.4.72) is satisfied by
fields whose photon distribution function is narrower than the Poisson
distribution. Such fields are referred to as sub-Poissonian. Fields for
which g®(0) = 1 and g®(0) > 1 are similarly referred to as Poissonian
and super-Poissonian, respectively. For example, a thermal field for
which g?(0) = 2 is super-Poissonian, a field in a coherent state |og)
for which g(®(0) = 1 is Poissonian, and the field in a number state |ng)
for which g@(0) = 1 — 1/nq is sub-Poissonian.

It 1s evident from the above discussion that many other field states
can be constructed for which the P-representation will not be well-
behaved. One such state is the squeezed state of the radiation field. To
show this, we express (AX;)? (i = 1,2) as an average with respect to
the P-representation:

(AX;)* = % +(: AX; )

- {1+ [#apeanie o) -+ 0.
(4.4.75)

The condition for squeezing (AX;)?> < 1/4 (i = 1 or 2) requires that
P(a, ") is negative for at least some values of «, i.e., it is not “non-
negative definite”. A squeezed state of the radiation field, therefore, is
a nonclassical state.

4.5 Photon counting and photon statistics

In this section we determine the photoelectron counting statistics pro-
duced by a fully quantum mechanical field. The problem of obtaining
the photocount distribution from the photon statistics can be solved
in a completely quantum mechanical fashion. Here we give a simple
derivation of this relationship based on a simple probabilistic argu-
ment.

Let the probability of having a photoelectron ejected from a detector
interacting with a field having just one photon |1) for a certain time
be given by 5. The quantum efficiency n depends on the characteristics
of the detector atoms and the interaction time. Now, if the state of the
radiation field is |n), the probability of observing m photoelectrons,
P(", is proportional to #™ which is to be multiplied by the probability
that (n — m) quanta were not absorbed, i.e., (1 — #)"™. This gives

Py ac f™(1 —p)" ™. (4.5.1)
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However, we do not know which m photons of the original number n
were absorbed, so we must include a combinatorial factor:

Py = ( ;;) 7" (L — )" (4.52)

This is Bernoulli’s distribution for m successful events (counts) and
n — m failures, each event having a probability 5. Since we have a
distribution of n values given by the photon distribution function p,,,,
we must multiply Eq. (4.5.2) by p,, and sum over n:

P, = ZP,S,n)Pnn, (453)

which yields the following expression for the photoelectron counting
distribution:

o 0]

Pu=>Y" (:;) 11— 1) D (4.5.4)

n=m

This expression is valid for all 4 (0 < n < 1). Clearly, if we wish
to obtain the photon statistics by counting photoelectrons, we must
require 1 = 1. In that case, we obtain from Eq. (4.5.4)

Pr = Pum. (4.5.5)

In all other cases, # < 1, and the measured photoelectron statistics
can be very different from the photon statistics.

Alternatively, we can write P, in terms of the P-representation,
P(a,a"), of the field by noting that

_[r WP
Pnn = d (ZP((Z,(Z )78 s (456)

so that Eq. (4.5.4) becomes

= / dzch(;)P( a)” e 1 ym(1 — gy, (4.5.7)

By changing n to £ + m and summing over Z, we obtain
P, = / LaP (o, ’” ' V" gl (4.5.8)

It may be pointed out that this equation can be inverted, ie., it is
possible to derive the P-representation of the field from the knowledge
of P,, given that p is diagonal in the n representation.
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4.A Classical and quantum descriptions of two-source
interference

Classically, the radiation from the two slits in Young’s experiment is
correctly described by two spherical waves. In the notation of Fig.
4.14, the intensity at the screen then goes as

éoeikrl éoeikrz 2
+

I(r) B n ra

, (4.A.1)

and the interference cross term is given by
&
rra

ek 4 cc. (4.A.2)

Iy =

Noting that ry, = \/D2 + (x Fd)? = D + d?/(2D) F xd/D, where the
‘—* goes with source 1 and the ‘4 with source 2, we have

*

& )
I = -‘%e—ll"xdﬂ’ + c.c. (4.A.3)

However, some texts give a plane-wave treatment of Young’s setup,
in which it is argued that the radiation at the detector site r consists
of two plane waves. In such a case, we have

2

I(r) = |6oe"™ + o™ |, (4.A.4)

and the interference cross term is
Ia(r) = Eg&oe ™8T L cc. (4.A.5)

Hence if, in the notation of Fig. 4.14, we write k; = k(2 cos 6, + X sin §;),
then k; - r = k(D cos 0; + xsin ;) = k(D F xd/D), where the ‘F signs
go with 1 and 2, and we find

Io(r) = &y Eoe P 4 ¢, (4.A.6)

in agreement with the spherical-wave treatment.

The quantum field theoretic description of Young’s experiment is
well illustrated by replacing the two slits by two atoms as in Section
4.3.2 and Section 21.1. There the state vector for the photon emitted
by the ith atom is given by

B gke—ik-di
=2 Gy (4A7)

where gg is a constant depending on the strength of atom-field cou-
pling, w is the atomic frequency between levels |a) and |b), I is the
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r,
1
177 0 . x
xJ d r,
z -d D
6,
2 777

decay rate for the |a) — |b) transition, and d; is the position of the ith
atom. The correlation function for the scattered field is then found to
be

2
G¥(r,£:0) = 5 [OIED (e, 11) + (I (5, )72
2
, (4.A.8)

ga eikn (:@ eikrz
+

n r

where & is an effective electric field. Thus we have the same result as
in the classical spherical-wave problem.

Finally, we note that single photon plane-wave states can be used
to demonstrate the two-source interference fringes. At the risk of
belaboring the obvious, we note that if we consider the radiation
from source 1 to be described by the single photon state |1y, ), and
that from source 2 by |ly,), then we have |p) = (|1x,) + |1k,))/~/2
and

GY(r,r;0) = (W ETN(r, ) EP(r, 1))

1 2
= 5 [(ES(r, 011i) + (OED(E, 0] 1,)

* ik ikor 2
= G360l oM

(4.A.9)

Here again, interference is observed as in the classical case, and the
utilization of both states |y;) and |1k,) in Young-type experiments is
justified.

4.B Calculation of the second-order correlation
function

From Egqs. (4.4.14) and (4.4.15), we have (note that some terms are
underlined)

Fig. 4.14

Schematic diagram
for a plane-wave
treatment of Young’s
setup.
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G(Z)(rl, r;tt)
= &4 {laf (1) + al, (D] [af(2) + a (D] [ax(2) + a(2)]
[ak(1) + aw (1)])

= &i{al(Dap(Dax(2)a(1)
+al(Daf(Qax()aw(1) + af(Da(Daw (2)ax(1)
+ap(Dal(2)aw (2)aw(1)]
+al(lal, (2)ax(2)ax(1) + af(1)al (2)aw (2ax(1)
+af(Daf (2)ax(ax(1) + af(Daf(2aw (2ay (1)]
+al, (Dag(Qax(2ax(1) + af(Daf(2)aw (2)ax(1)
+lal (Daf(Q)ax(2ax(1) + af (1af (2)aw (2)ar(1)]
+ap (Dap (Daw (2)aw (1)
+laf, (Daf(2)ax(2)aw (1) + af,(Daf (2)aw (2)ax(1)

+al (al, (2)ax(2)ax(1)]), (4.B.1)
where
a]t(l) — alt e—ik-l‘i,
al, (i) = af, e ¥, (4.B.2)

Note that all the termsin square brackets for the final equation van-
ish when averaged for stars, phase-diffused lasers, thermal light, and
atoms. Therefore, keeping only the underlined terms, we find
GA(ry,ra;t,t) = éaﬁ(a;a;iakak + alt,alt,ai‘ai(
+ajaf axap [1 + e kK2
+alt,a|takrak [1 + & KT, (4.B.3)

Problems

4.1 Show that the radiation field state which is a linear superpo-
sition of the vacuum state and a single photon state, i.e.,

) = @l0) + a1]1),

where ap and a; are complex coefficients, is a nonclassical
state.

4.2 Let m, = (a™a") be the nth-order moment of the intensity
variable. Consider the matrix defined by
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1 m m
M= {m m ms
m; msz my
Show that for a classical P-representation det.# must be
positive definite. (Hint: see G. S. Agarwal and K. Tara, Phys.
Rev. A 46, 485 (1992).)

4.3 Consider a state described by the density operator
p= ’/VaTme—rcaTaam

where A" 1s a normalization constant and x = hv /kgT.
(a) Show that it goes over to a Fock state if k — oo and
to a thermal state if k — 0.

(b) Find g®(0) and show that the photon statistics are
sub-Poissonian if

i<y —
m+1’
where i = [exp(x) — 1]7L.

44 Find the photoelectron distribution function P,, for the co-
herent state |«), the number state |n), and the single-mode
thermal field at temperature T.
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